Beginning Data Analysis with Python And Jupyter
出 版 商:Packt Publishing
出版日期:2018/06/05
About This Book
Get up and running with the Jupyter ecosystem and some example datasets
Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests
Discover how you can use web scraping to gather and parse your own bespoke datasets
Who This Book Is For
This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
What You Will Learn
Identify potential areas of investigation and perform exploratory data analysis
Plan a machine learning classification strategy and train classification models
Use validation curves and dimensionality reduction to tune and enhance your models
Scrape tabular data from web pages and transform it into Pandas DataFrames
Create interactive, web-friendly visualizations to clearly communicate your findings
In Detail
Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context.
Style and approach
This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations.
Make web applications run faster by using advanced PHP, SQL and JavaScript techniques
Get up and running with the Jupyter ecosystem and some example datasets
Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests
Discover how you can use web scraping to gather and parse your own bespoke datasets
Who This Book Is For
This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
What You Will Learn
Identify potential areas of investigation and perform exploratory data analysis
Plan a machine learning classification strategy and train classification models
Use validation curves and dimensionality reduction to tune and enhance your models
Scrape tabular data from web pages and transform it into Pandas DataFrames
Create interactive, web-friendly visualizations to clearly communicate your findings
In Detail
Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context.
Style and approach
This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations.
Make web applications run faster by using advanced PHP, SQL and JavaScript techniques